بررسی تغییرات وزنی سه نوع سمان گلاس آینوئوم مورد استفاده در بندینگ ارتودنسی بعد از قرارگیری در آب مقطر

دکتر الهه وحید دستجردی، دکتر سعیده صدر، دکتر امیر قاضی، دکتر محمدجواد خرازی فرد

چکیده

سایر به هدف: جهت سمان کردن بندنهای ارتودنسی از سمن های مختلف استفاده می‌شود. در مورد این سمان‌ها حساسیت خیال‌ریزی سخت شدن، همچنین، حلال‌گیری و تجزیه سمان بعد از مرحله سخت شدن مطرح می‌شود. هر یک از این موارد خود باید از دست داده شود. انتخاب بین بد و دندان شده، افزایش احتیاج پویاسکی و دکلسیفیکاسیون را منجر می‌گردد. هدف از این مطالعه بررسی میزان تغییرات وزنی سمان‌های گلاس آینوئوم مختلف مورد استفاده در ارتودنسی بود.

مواد و روش‌ها: این مطالعه یک تجربه بر روی ۲۳ نوع سمان گلاس آینوئوم در آزمایشگاه مادرانه دانشکده دندانپزشکی شهید بهشتی انجام گرفت. نمونه‌های پابرجا شش شماره دستبندی شده داده‌های به دست آورده بوده و با پاسخ الکترونیک آنالایزر فرستاده شدند. در نهایت، تبیین تغییرات وزنی پس از ذوب شدن در آب برای ۶ هفته با استفاده از آزمون ANOVA آماری تجزیه تحلیل گردید.

یافته‌ها: وزن میزان تفاوت وزن در میان های مختلف بین سمان‌های گلاس آینوئوم اختلاف معناداری را نشان داد (P<0.05) با که میزان تغییرات وزنی در سمان گلاس آینوئوم آباداند به طور معناداری بیشتر از سمان دیگر بود.

کلید واژگان: تغییرات وزنی، سمان گلاس آینوئوم، پشتیبانی ارتودنسی

تاریخ دریافت مقاله: ۱۳۸۹/۷/۲۴
تاریخ اصلاح نهایی: ۱۳۸۹/۵/۲۴
تاریخ تایید مقاله: ۱۳۸۹/۷/۲۴

مقدمه

سمان‌های مختلف از جمله سمان‌های گلاس آینوئوم، سمان‌های زینک فسفات و سمان‌های زینک پلی اکریلیک (زینک پلی کربونیلات) برای سمان کردن بندنهای ارتودنسی به کار می‌روند (۱-۳). بکی از مهم‌ترین خواص سمان‌های گلاس آینوئوم که موجب استفاده از آنها برای این منظور می‌گردد، توانایی آنها در به حداکثر رسیدن دکلسیفیکاسیون می‌باشد. ارتودنسی می‌باشد (۴). از دیگر خواص سمان گلاس آینوئوم می‌توان به جذب‌گیری و نیز میزان انقباض ناشی از سخت شدن، ضرر ناپاسخ حرارتی پایین و

E-mail: sadrsaeede@dent.sbmu.ac.ir
جدول ۱- سپاسهای مورد بررسی در مطالعه

<table>
<thead>
<tr>
<th>Cement type</th>
<th>Brand</th>
<th>Manufacture</th>
<th>Abbreviation</th>
<th>Lot no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass ionomer cement</td>
<td>Resilience</td>
<td>Ortho-Technology, USA</td>
<td>GIC (A)</td>
<td>DP-1/031307</td>
</tr>
<tr>
<td></td>
<td>Bandite</td>
<td>American Orthodontics, USA</td>
<td>GIC (B)</td>
<td>070709A</td>
</tr>
<tr>
<td></td>
<td>Aria Dent</td>
<td>Apadana-Tak, Iran</td>
<td>GIC (C)</td>
<td>GC001</td>
</tr>
</tbody>
</table>

چند نمونه‌ای از گلاس آینیوم به‌طور متغیر بوده و همچنین ورزگری می‌شود. به دست آمده به وسیله پالس تشکیل‌انجامدها، سایری روزه‌ای از دست‌آوردهایی که بر اساس تحقیق در مورد مشترکانه، مواد

مواد و روش‌ها

این تحقیق به صورت تجربی و در شرایط آزمایش‌گاهی کشیده شد. به‌منظور اجرای صورت تجربی در آزمایشگاهی مورد

مطالعه نه سه سپاسهای گلاس آینیوم شایع مورد استفاده در بندی‌گیری ارتودنسی سواری قرار گرفته (جدول ۱).

این مطالعه مورد بررسی در مدت ۱ آوریل و ۳۱ ژانویه ۱۹۰۹ به روش Repeated Measure ANOVA آزمون تغییرات ورود (زنده ژانویه‌اصلی) به عناوین متغیر Between و نوع ماده گلاس آینیوم به عنوان Repeated Subject Comparison. بررسی کردید.

با توجه به محتواهای اثر متقابل بین متغیر Repeated و Repeated ساختار کرکیکتیک، شیار، اثر در دمای ۳۷ درجه سانتی‌گراد برای ۶۰ دقیقه قرار داده شد. نمونه‌ها در زمان‌های مشترک بین دوره‌های کاری برای ورزگری خارج شده، پس از ورزگری توسیع نمودار به یک فلاکس جدید منتقل می‌شده. بنابر طرح اصلی Desicador نمونه‌ها از آب خارج شده به مدت ۱ ساعت در
یافته‌ها
میانگین اختلاف وزن کلسه آینووامها در روز چهلم و دوم Aria نسبت به روز اول از این قرار است: کلسه آینووام Dent: 0/155/0/0 با انحراف معیار 0/078/0/0 کلسه آینووام Bandit: 0/057/0/0 با انحراف معیار 0/021/0/0 کلسه آینووام Resilience: 0/082/0/0 با انحراف معیار 0/02/0/0 نتایج نشان داد که میانگین افزایش وزن کلسه آینووام در روز چهلم و دوم نسبت به روز اول بیشترین میزان است در حالی که کلسه آینووام Resilience کاهش وزن نشان می‌دهد.

جدول ۲- میانگین اختلاف وزن و انحراف معیار کلسه آینووام‌ها در روز‌های دوم تا چهلم مناسبی به روز اول

<table>
<thead>
<tr>
<th>نوع سمان</th>
<th>انحراف معیار</th>
<th>میانگین اختلاف وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI Resilience</td>
<td>0/030/0</td>
<td>+0/003/0</td>
</tr>
<tr>
<td>GI Aria Dent</td>
<td>0/035/0</td>
<td>+0/002/0</td>
</tr>
<tr>
<td>GI Bandtite</td>
<td>0/038/0</td>
<td>+0/001/0</td>
</tr>
<tr>
<td>GI Ariadent</td>
<td>0/041/0</td>
<td>+0/000/0</td>
</tr>
</tbody>
</table>

نمودار ۲- متوسط تفاوت وزن کلسه آینووام‌ها مختلف در روز‌های دوم تا چهلم نسبت به روز اول

بحث
مطالعه حاضر با هدف بررسی تغییرات وزنی سه نوع سمان کلسه آینووام انجام شد. بافت‌های آموزی باعث نشت می‌شود که میزان تغییرات وزن در زمان‌های مختلف بین سه نوع سیمان اختلاف آماری معناداری نداشت. که گونه‌ای که سیمان کلسه آینووام Aria Dent نسبت به سایر سمان‌ها بیشترین میزان Resilience تغییرات وزنی و سیمان کلسه آینووام داشت. که گونه‌ای که کاستن میزان تغییرات وزنی را نشان داد.

یک دستگاه ارتودنسی برای تداوم مکانیک‌های ارتودنسی ضروری است. یکی از مهم‌ترین خصوصیت‌های ارتودنسی است. یکی از مهم‌ترین خصوصیت‌های ارتودنسی ضروری است.

مجله دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی، دوره 28، شماره 3، پاییز 1389
که بند ارتودنسی که در مکانیکهای ارتودنسی به کار
برده به میزان بیشتری گزارش شده است. فیل و کمربندی
اکثریت طبقات کنیکی و شیمیایی تأمین می‌شود.
گیر مکانیکی توسط مولکول‌های دندان و گیر شیمیایی با
استقلال از سطح سالانه لیتینgt (46) از آن جا
لیتینگ از مهربانی‌ترین خصوصیات سالانه
حلالیت‌پذیری آنها در محیط دهان می‌باشد. این مسئله
می‌تواند عامل اولیه بکش و قلب شدن بند به سیم ارتودنسی
باشد (17). با این حال گیر مکانیکی ارتودنسی از آغاز تا
پایان درمان، همچنین اسید کلسیم حلالیت‌پذیری
سالانه در پراک طی درمان، نوبت جدید کردن زیرا با اخلال
پوست سالانه و leakagه سیستم به طوری که مشخص گردیده با احتمال بی‌پدید شدن
لق سطح می‌شود، پوستی اولیه میان تنها (28)
مشکل می‌شود و حتی منجر به بروز آسیب‌های جدی به دندان‌ها
بینده این شده و می‌تواند از مشکلات درمانی‌های ارتودنسی واستگی به وجود بند به مامک در طی
درمان و همچنین دندان‌ها بالا یا از اسیب نتانی
(18) (16).
بنابراین، دستیابی به سالانه‌های که حلالیت‌پذیری کمتری
دارند، بیان باعث افزایش کارآیی مکانیکهای ارتودنسی،
همچنین کاهش شانس microleakage و ایدئال‌سینگ
شوند ضروری است. برخی سالانه‌های کلسیم آیون‌کر
نسبت به سایر سالانه‌ها از جهت اکادمیا اول و تأثیر
کی گیر یکی مطالعه

در مطالعات متعددی میزان تغییرات وزن سالانه‌های کلسیم آیون‌کر و لایت کیور مختلف بررسی شده است. در
(16) (45) کیلو کلاس اسکایکینگ، لایت کیور
و کمترین سالانه در Ionoliner و کمترین میزان در
class آیون‌کر (46) (16).
کاهش شد و است. (120).
در مطالعات میزان تغییرات وزن سالانه‌های کلسیم
آیون‌کر و لایت کیور مختلف بررسی شده است. در
(16) (45) کیلو کلاس اسکایکینگ، لایت کیور
و کمترین سالانه در Ionoliner و کمترین میزان در
class آیون‌کر (46) (16).
کاهش شد و است. (120).
در مطالعات میزان تغییرات وزن سالانه‌های کلسیم
آیون‌کر و لایت کیور مختلف بررسی شده است. در
(16) (45) کیلو کلاس اسکایکینگ، لایت کیور
و کمترین سالانه در Ionoliner و کمترین میزان در
class آیون‌کر (46) (16).
کاهش شد و است. (120).
در مطالعات میزان تغییرات وزن سالانه‌های کلسیم
آیون‌کر و لایت کیور مختلف بررسی شده است. در
(16) (45) کیلو کلاس اسکایکینگ، لایت کیور
و کمترین سالانه در Ionoliner و کمترین میزان در
class آیون‌کر (46) (16).
کاهش شد و است. (120).
References