Dimensional Accuracy of Polyvinyl Siloxane Impression Materials Considering Impression Techniques—A Literature Review

Nadia Nouri, Parviz Amini, Reza Amini, Mohammad Mousavi, Sajad Raeisi Estabragh, Abdola Ebrahimi

1Postgraduate Student, Dept. of Prosthodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
2Associate Professor, Dept. of Prosthodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
3Undergraduate Student, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
4Postgraduate student, Dept. of Orthodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.

Correspondence to Parviz Amini (email: dr_pamini@yahoo.com).

(Submitted: 6 April 2019 – Revised version received: 22 May 2019 – Accepted: 25 May 2019 – Published online: Winter 2019)

Objectives Impression accuracy is the main determinant of the fit, form and function of prosthetic restorations. Polyvinyl siloxane (PVS) is the material of choice in most clinical situations. The purpose of this paper is to provide an up-to-date review of scientific articles which discuss the dimensional accuracy of PVS impression material using various impression techniques, tray types and spacers. Besides, the procedure, advantages and disadvantages of commonly used impression techniques, technique modifications and innovations are also reviewed.

Method An electronic search of scientific papers from 1990 to 2018 was carried out using MEDLINE and Google Scholar databases using the search terms “accuracy and polyvinyl siloxane and impression technique” and “accuracy and addition silicone and impression technique”.

Results Searching the key words yielded a total of 312 articles. By application of inclusion and exclusion criteria, the obtained results were further reduced to 35 citations.

Conclusion Impression technique is a critical variable in the accuracy of PVS impressions. Dual-phase 2-step technique with 1 to 2 mm space for the light body is proven to be highly accurate and is still considered as the standard technique. The use of 2-step technique without providing a space for the wash material is rejected by the literature. Triple-phase 2-step techniques including “matrix impression system” have also functioned well and even superior to traditional dual-phase 2-step technique. Papers suggest that custom trays do not significantly improve the accuracy of impressions and rigid stock trays are suitable alternatives.

Keywords Vinyl Polysiloxane; Dental Impression Technique; Dimensional Measurement Accuracy

Introduction

In the 1970s, polyvinyl siloxane (PVS) impression material appeared in the market and became very popular, in part because of its combination of excellent physical properties, handling characteristics, dimensional accuracy and dimensional stability. Currently, PVS is the material of choice in many clinical situations. Several techniques have been suggested to improve the accuracy of PVS impressions. Routinely used impression techniques are categorized as single-phase or dual-phase. Techniques that use monophase materials are accomplished in a single-step procedure, usually by materials of medium viscosity. Two variations of the dual-phase technique are commonly used: (I) the dual-phase one-step technique, in which both materials polymerize in one stage, and (II) the dual-phase two-step technique, in which a putty or a heavy consistency material is used alone as the initial step to function as a custom tray, and then a final impression is made by use of a silicone with lower viscosity. Some novel techniques have been introduced to improve the accuracy of impressions. An example of these innovations is the triple-phase 2-step technique which consists of a primary impression by putty and light body materials and a secondary step for injection of extra light body material into the impression. The “Matrix impression system” is another triple-phase 2-step technique introduced by Livaditis to overcome the limitations of previous techniques. This technique requires three viscosities of impression materials. A variety of variables in making an impression such as the technique, tray type, amount of space and spacer type cause indecisiveness in clinical practice. Despite the fact that PVS material has absolute dimensional accuracy, Samet et al. reported that nearly 90% of the cast models had one or more visible errors. This comprehensive review aims to summarize, criticize and discuss the traditional and novel impression techniques and relevant issues. Besides, the procedures, advantages and disadvantages of the techniques will be discussed.

Materials and Methods

A comprehensive search was made through MEDLINE and Google Scholar databases using the following search terms: “accuracy and polyvinyl siloxane and impression technique” and “accuracy and addition silicone and
impression technique”. Search filters were applied for English language and publication dates from 1990 to 2018. A total of 312 articles were retrieved. The inclusion criteria were any article with available abstract, exactly relevant to the search terms and concerning the field of fixed prosthodontics. Editorials, manufacturer-supported publications and studies in the field of implant dentistry were excluded. Titles were screened to remove the duplicate records and to select the studies that exactly met all the aforementioned criteria. Records further decreased to 56 articles. Abstracts and full-texts were reviewed thoroughly and cross-matched with the predefined inclusion criteria. Reference lists of the included articles were scanned for additional relevant articles. In total, 35 articles formed the basis of this review (Figure 1).

![Figure 1- Method of searching and selecting the articles](image)

Results

The retrieved studies concerning different impression techniques are summarized in Table 1.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Sample size</th>
<th>Impression technique</th>
<th>Wash space</th>
<th>Material consistency</th>
<th>Tray</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pande (2013)</td>
<td>N=15</td>
<td>1-Dual-phase 1-step</td>
<td>1-3.5 mm tray relief</td>
<td>1-Heavy/light</td>
<td>1-Custom</td>
<td>Dual-phase 1-step technique in custom tray was more accurate.</td>
</tr>
<tr>
<td>Vitti (2013)</td>
<td>N=5</td>
<td>1-Dual-phase 2-step</td>
<td>2-1.5 mm relief for wash</td>
<td>2-Putty/light</td>
<td>2-Stock metal</td>
<td>No significant difference was found.</td>
</tr>
<tr>
<td>Dugal (2013)</td>
<td>N=15</td>
<td>1-Dual-phase 1-step</td>
<td>1-0.5 mm metal cap</td>
<td>1-Putty/light</td>
<td>Custom</td>
<td>2-step technique was more accurate. The best spacer thickness was 1 mm, followed by 1.5 and 0.5.</td>
</tr>
<tr>
<td>Shiozawa (2013)</td>
<td>N=5</td>
<td>Dual-phase 2-step</td>
<td>1-1mm resin coping</td>
<td>1-Putty/light</td>
<td>NS**</td>
<td>Thinner wash space and putty/light body combination resulted in better accuracy.</td>
</tr>
</tbody>
</table>

*P: Polyethylene, **: Not specified*
I. Pattern of dimensional changes of PVS impressions

A common design for master models among the reviewed studies was a steel model of single crown or bridge preparation. Using different techniques, impressions were made and poured. The resultant stone casts were studied and the dimensions of each preparation and the distance between the preparations were compared with the dimensions of the master model. In most of the reviewed articles, when stone casts and the master model were compared, the vertical dimension (intra-abutment) of stone dies decreased; whereas, the horizontal dimension (inter-abutment) increased. This phenomenon might have occurred due to the contraction of the impression material toward the tray walls. Adhesion of the impression material to the adhesive-coated tray is another possible reason. Because of the constraint imposed by the adhesive on uniform shrinkage upon setting, abutments in the resultant cast may tend to be a greater distance apart than they were actually in the model. Moreover, in the multi-step techniques, the wash material may hydraulically displace the preliminary putty impression during impression seating, and the putty may then exhibit some elastic recovery upon removal of the impression and result in a tendency towards smaller dies and therefore larger inter-abutment distances.

II. Impression techniques:

II.A. Single-phase impression technique

Single-phase technique was introduced to simplify the procedure of impression making. Medium consistency is used as monophase material in the majority of the studies.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Sample Size</th>
<th>Techniques/Steps</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idris (1995)</td>
<td>N=15</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 2-Dual-phase 2-step</td>
<td>2.2mm wide sulcuses, 1-Putty/light, 2-Putty/soft, 2-Soft, 1-Medium, 2-Medium, 2-Extra-light, 2-Normal, 2-Extra-light</td>
</tr>
<tr>
<td>Caputi (2008)</td>
<td>N=15</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 3-Dual-phase 2-step, 4-Dual-phase 2-step (2-step injection)</td>
<td>3-2mm resin coping, 4-Extra-light, 1-Medium, 2-Putty/light, 2-Soft, 2-Extra-light</td>
</tr>
<tr>
<td>Basapogu (2016)</td>
<td>N=10</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 3-Dual-phase 2-step</td>
<td>3-PE spacer, 1-Medium, 2-Putty/soft, 2-Soft, 1-Medium, 2-Medium, 2-Extra-light</td>
</tr>
<tr>
<td>Kumari (2015)</td>
<td>N=10</td>
<td>1-Dual-phase 1-step, 2-Dual-phase 2-step</td>
<td>2.15 mm Brass metal plate, 1-Heavy/light, 2-Heavy/light</td>
</tr>
<tr>
<td>Varvara (2014)</td>
<td>N=10</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 3-Dual-phase 2-step, 4-Dual-phase 2-step (2-step injection)</td>
<td>3-2mm resin coping, 4-Extra-light, 1-Medium, 2-Putty/light, 2-Soft, 2-Extra-light</td>
</tr>
<tr>
<td>Nissan (2013)</td>
<td>N=15</td>
<td>1-Dual-phase 1-step, 2-Dual-phase 2-step, 3-Dual-phase 2-step</td>
<td>2.2mm crown, 3-PE spacer, 1-Putty/light, 2-Putty/light, 3-Putty/light</td>
</tr>
<tr>
<td>Singh (2012)</td>
<td>N=5</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 3-Dual-phase 1-step, 4-Dual-phase 2-step, 5-Dual-phase 2-step, 6-Dual-phase 2-step (2-step injection)</td>
<td>4-Sulcuses, 5-0.3 mm PE spacer, 6-2mm plastic spacer, 1-Medium, 2-Medium, 3-Putty/light, 4-Heavy/light, 4-Heavy/light, 5-Putty/light, 5-Putty/light, 6-Putty/light, 6-Putty/light</td>
</tr>
<tr>
<td>Franco (2011)</td>
<td>N=10</td>
<td>1-Dual-phase 1-step, 2-Dual-phase 2-step (without relief)</td>
<td>NS, 1-Heavy/light, 2-Heavy/light</td>
</tr>
<tr>
<td>Mishra (2010)</td>
<td>N=10</td>
<td>1-Single-phase, 2-Dual-phase 1-step, 3-Dual-phase 1-step, 4-Dual-phase 2-step, 5-Dual-phase 2-step, 6-Dual-phase 2-step</td>
<td>1-2mm tray space, 2-2mm tray space, 3-2mm tray space, 4-PE spacer, 5-2mm tray space, 6-2mm tray space, 1-Putty/light, 2-Putty/light, 3-Putty/light, 4-Putty/light, 5-Putty/light, 6-Putty/light</td>
</tr>
<tr>
<td>Nissan (2000)</td>
<td>N=15</td>
<td>1-Dual-phase 1-step, 2-Dual-phase 2-step, 3-Dual-phase 2-step</td>
<td>2-2PE spacer, 3-2mm coping, 1-Putty/light, 2-Putty/light, 3-Putty/light</td>
</tr>
<tr>
<td>Patil (2008)</td>
<td>N=10</td>
<td>1-Dual-phase 2-step, 2-Single-phase, 3-Dual-phase 1-step</td>
<td>1-PE spacer, 1-Putty/light, 2-Putty/light, 3-Heavy/light</td>
</tr>
</tbody>
</table>
Single-phase impressions are at great risk of presence of voids and surface defects. It is anticipated that monophase materials are used predominantly in stock trays as it is claimed that it is not necessary to use monophase materials in custom trays. Nevertheless, evidence supports the contradictory idea that monophase PVS materials are not sufficiently accurate in stock trays, although they provide acceptable accuracy in custom trays.

Trays might have an effect on the number of surface voids because of the pressure exerted on the impression material in the close-fitting custom tray. The increased viscosity of monophase materials, necessary to prevent large masses of material from slumping, adversely affects the flow of the material over the preparation. This might be the reason for the high frequency of surface defects and voids in the impressions of single-phase technique.

II.B. Dual-phase 1-step impression technique

Studies about the accuracy of dual-phase 1-step impression technique are controversial. Some studies report that the dual-phase 1-step technique is more accurate than the single-phase technique. Furthermore, a large number of investigations indicate that this technique is not as accurate as the dual-phase 2-step technique.

Contrary to these findings, some studies claim that dual-phase 1-step impression technique is more accurate than dual-phase 2-step technique.

Dual-phase 1-step technique has shorter chair-time and saves impression material. Although, in this technique the putty tends to push the light-body wash off the preparation and critical areas. The finish lines may be covered by the putty, which cannot reproduce the fine details to the satisfactory level.

For this reason, even in the studies that dimensional accuracy of 1-step technique was equal to 2-step technique, concerns about the reproduction of fine details when using 1-step technique are not eliminated. Occasional ledges at the junction of the putty and wash material and presence of voids and bubbles are among other shortcomings of this technique.

A prerequisite for an accurate impression is the controlled wash bulk, which is not fulfilled in the 1-step technique.

Dual-phase 1-step technique requires mixing of the putty material and the syringe material at one stage. Thus, setting distortion of the putty is included in the overall distortion of the impression.

The need for a second person to aid the simultaneous handling of the two materials is another factor to be considered. Moreover, in the 1-step technique, once the light body material is on the preparation, the putty needs to be brought into position and seated. During this critical phase, the patient’s tongue or the elevated floor of the mouth can remove the light-body material from the tooth.

II.C. Dual-phase 2-step impression technique

Dual-phase 2-step technique is widely accepted as the standard technique for PVS impressions. There are many studies that state the higher dimensional accuracy of this technique over the single-phase and dual-phase 1-step techniques.

In the putty/wash two-step impression technique, preparations are recorded with the wash material, which results in better detail reproduction. Amongst all modifications of 2-step technique, the ones which precisely define the bulk of wash material by using copings or temporary crowns are more accurate. Despite the accuracy of this technique, distortion, extra chair-time, and extra material needed should be considered.

II.D. Triple-phase 2-step impression technique

Occlusal matrix technique

One modification of the current impression techniques was introduced and studied by Caputi and Varvara. Triple-phase 2-step technique consists of a primary impression by simultaneous use of putty and light body material in a stock tray. In the second step, a hole is made in the preparation site of impression and extra-light body material is injected through this hole to record the fine details. The results of both studies showed that this technique was more accurate than the dual-phase 2-step, dual-phase 1-step and single-phase techniques.

This finding can be related to the reduced wash bulk obtained through the use of the extra-light body material. By diminishing the volume of the polymerizing material at each stage, the final contraction will be reduced, as well and the accuracy of the impression can be improved.

The other triple phase technique namely the “matrix impression technique” attempts to overcome the deficiencies of the older systems while incorporating their best features. A matrix of occlusal registration with putty consistency of polyether or PVS material is made over the tooth preparations. Facial and palatal sides of the matrix are trimmed. A definitive impression is made in the matrix of the preparations with a high viscosity elastomeric impression material. After the matrix impression is seated, a stock tray filled with a medium viscosity elastomeric impression material is seated over the matrix and remaining teeth to create an impression of the entire arch. The matrix impression system showed higher accuracy when compared with dual-phase 1-step and dual-phase 2-step techniques in both intra-abutment and inter-abutment dimensions.

III. Tray type

III.A. Plastic stock tray

Tray type is a critical variable in the choice of impression techniques. Stock trays are popular as they are affordable and convenient, and can be selected, adapted, and used in a single visit. When a stock tray is selected, usually a high-viscosity impression material is used. High-viscosity materials can result in pressure while seating the tray. This force may cause distortion of the tray if it is not sufficiently rigid. This will cause tray rebound on removal from the mouth.

III.B. Metal stock tray

Rigid (metal) stock tray requires additional care to block out any existing undercuts on the adjacent teeth or areas where the material could flow and cause problems on removal, such as pontic sites. If clinicians fail to take such precautions, the rigidity of contemporary impression materials may create an unpleasant clinical situation in which the metal tray is locked into the mouth; its removal requires a significant amount of time and effort, causing severe discomfort to the patient as well.

Studies by Balkenhol et al. and Hoyos and Soderholm showed that disposable plastic trays resulted in

35
less accurate impressions compared with metal trays. Another study conducted by Abuasi et al. concluded that combination of putty/light body in plastic tray is unsatisfactory regarding die distortion. Metal trays were shown to reduce die distortion.43

III.C. Custom trays

Custom trays are believed to increase the accuracy of impressions as the pressure exerted on the impression material to record the details of the preparation is higher in the close-fitting custom trays. They allow uniform impression material thickness, minimizing material waste, and are also more comfortable for patients. Custom trays permit placing suitable thickness, minimizing material waste, and are also more comfortable for patients. Custom trays permit placing suitable thickness, minimizing material waste, and are also more comfortable for patients. Custom trays permit placing suitable thickness, minimizing material waste, and are also more comfortable for patients. Custom trays permit placing suitable thickness, minimizing material waste, and are also more comfortable for patients.

However, making a custom tray is costlier and requires planning, a study model, laboratory time, a curing interval, and finishing time.3, 22, 23 Studies suggest that custom trays do not significantly affect the accuracy of 2-step putty/light body impressions and stock trays with proper spacing and sufficient rigidity are acceptable.45 Following a survey of almost 4000 American dentists, Shillingburg et al. reported that around 75\% of the respondents used stock trays routinely.46

Investigations about the amount of space necessary for monophase materials in a custom tray or the required space for light-body in the second step of dual-phase 2-step technique are summarized in Table 2.

IV. Material space requirements

IV.A. Tray space for single-phase impression technique

Three studies concerning this issue compared 2, 4 and 6 mm space in custom trays for single-phase medium-body PVS. Tjan et al. concluded that tray space did not affect the accuracy.47 However, studies by Rajapur et al. and Kumar et al. showed that 2 or 4 mm space is more accurate than 6 mm space.48-49

IV.B. Necessity of wash space for dual-phase 2-step impression technique

Dual-phase 2-step technique without any relief for the light body, known as hydraulic technique, was introduced in order to eliminate the need for packing retraction cord or use spacers. According to this technique, the high consistency material is supposed to generate a hydraulic pressure that propels the low-consistency material into the sulcus and all the internal aspects of the preparation. Franco et al. and Sayed et al. investigated the efficacy of this technique and reported that it was not an efficient method.27, 50

The significant strain induced by the wash material to the high-consistency material, might cause deformation in the already set impression. After setting and on removal, the high consistency material is likely to exhibit elastic recovery, returning to its original position. Therefore, hydraulic technique is not recommended as the standard method for 2-step PVS impressions.27, 50

Table 2: Summary of articles evaluating the space for impression materials, considering the author’s name, sample size, spacer type, amount of space, impression technique, material consistency, tray type and the result of the studies. (*: Polyethylene, **: Not specified)

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Sample size</th>
<th>Spacer</th>
<th>space</th>
<th>Impression technique</th>
<th>Material consistency</th>
<th>Tray</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tjan (1992)</td>
<td>N=5</td>
<td>Silicone spacer</td>
<td>1-2mm 2-4mm 3-6mm</td>
<td>Single-phase</td>
<td>Medium</td>
<td>Custom</td>
<td>No significant difference was found.</td>
</tr>
<tr>
<td>Mann (2014)</td>
<td>N=10</td>
<td>1-Cut-out technique 2-Spacer foil</td>
<td>1-1mm 2-2mm 3-3mm 4-4mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>Stock metal</td>
<td>Spacer foil was more accurate.</td>
</tr>
<tr>
<td>Nissan (2002)</td>
<td>N=15</td>
<td>1-Resin coping 2-Resin coping 3-PE* foil</td>
<td>1-2mm 3-3mm 5microns</td>
<td>Dual-phase 2-step</td>
<td>1-Putty/light 2-Putty/medium</td>
<td>NS**</td>
<td>Thinner wash space resulted in better reproduction of sulcus depth.</td>
</tr>
<tr>
<td>Shiozawa (2013)</td>
<td>N=5</td>
<td>Metal cap</td>
<td>1-2mm 2-2mm 3-3mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>Custom</td>
<td>The best spacer thickness was 1 mm, followed by 1.5 and 0.5.</td>
</tr>
<tr>
<td>Dugal (2013)</td>
<td>N=15</td>
<td>NS</td>
<td>1-2mm 2-2mm 3-3mm</td>
<td>Single-phase</td>
<td>Medium</td>
<td>Custom</td>
<td>2 or 4 mm tray spaces were more accurate.</td>
</tr>
<tr>
<td>Rajapur (2012)</td>
<td>N=5</td>
<td>1-Cut-out technique 2-Plastic sheet 1-PE foil</td>
<td>1-2mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>NS</td>
<td>No significant difference was found.</td>
</tr>
<tr>
<td>Fenske (2000)</td>
<td>N=15</td>
<td>2-Stainless steel coping</td>
<td>2-2mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>Custom</td>
<td>2mm wash space resulted in more accuracy.</td>
</tr>
<tr>
<td>Nissan (2000)</td>
<td>N=15</td>
<td>Space designed in the master model 1- Aluminum foil 2- Escape grooves 3- No modification 4- Ant-posterior rocking motion 5- Temporary crowns</td>
<td>1-2mm 3-3mm 5-5mm</td>
<td>Single-phase</td>
<td>NS</td>
<td>Custom</td>
<td>2mm and 4 mm tray spaces were more accurate respectively.</td>
</tr>
<tr>
<td>Kumar (2012)</td>
<td>N=5</td>
<td>1-Cut-out technique 2-Plastic sheet 1-PE foil</td>
<td>1-2mm 2-2mm 3-3mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>Stock</td>
<td>Antero-posterior rocking movement technique showed the most accurate results, followed by Aluminum foil technique.</td>
</tr>
<tr>
<td>Sayed (2015)</td>
<td>N=7</td>
<td>1-Aluminum foil 2- Escape grooves 3- No modification 4- Ant-posterior rocking motion 5- Temporary crowns</td>
<td>1-2mm 3-3mm</td>
<td>Dual-phase 2-step</td>
<td>Putty/light</td>
<td>Stock</td>
<td></td>
</tr>
</tbody>
</table>
VI. C. Methods of preparing wash space for dual-phase 2-step impression technique

Different methods are suggested for making wash space such as grinding away some of the putty impression material after the first step of impression making, recording the putty before tooth preparation, application of different spacers such as polyethylene spacer foils, resin copings, metal copings, cutting-out sluiceways, polypropylene spacers or temporary crowns.1, 29, 30, 33, 47, 48, 51-54

The conventional cut-out technique is criticized by some researchers. Using the cut-out technique, distortion of the putty material during final impression making is probable as the light body material is compressed while seating the tray. Furthermore, the position of the tray during definitive impression making may deviate slightly from its original position. Cutting sluiceways also results in a great amount of debris in the clinical environment. These shortcomings have led researchers to introduce a modified reline technique. Leao et al. proposed that before completion of the putty polymerization, the impression was removed and putty was compressed using the handle of a dental cement spatula for wash space and re-inserted on the preparations.55 Plastic spacers and spacer foils result in higher accuracy compared with the cut-out technique. With the use of spacer foil, the flexible foil deforms and creates a space between teeth and impression material during the primary impression. This allows for drainage and pressure is decreased on the first impression material during the definitive impression making. Thus, less compensative elastic recovery of the impression material upon removal is expected.30 However, spacers do not provide controlled wash bulk and the space made by these techniques is insufficient. The most accurate method is proven to be the use of temporary crowns or copings in the first step of impression; as wash bulk is precisely controlled in these techniques.

IV.D. Amount of wash space for dual-phase 2-step impression technique

The amount of space necessary for the wash material is still controversial. Nissan et al. suggested 1 or 2 mm thick temporary crowns to prepare the wash space.51 Likely, in a study conducted by Dugal et al, 1 mm wash space was recommended.33 However, dimensional accuracy is not the only issue affected by the wash space. Shiozawa et al. reported that thinner wash space prepared by 25 μm thick polyethylene spacer foils resulted in better reproduction of sulcus depth. This might be the result of the heavy consistency material forcing the wash body intensely so it cannot escape easily.52

V. Studies refusing the effect of impression techniques on the accuracy of PVS impressions

Despite all the findings that propose the significant effect of impression techniques on the dimensional accuracy of PVS impressions, few studies claim that impression technique is not a critical variable in the accuracy of PVS impressions.12, 26, 31 Vitti et al. reported that the accuracy of single-phase light body impressions in custom trays was statistically equal to putty/light body 1-step impressions in stock trays and putty/light body 2-step impressions in stock trays with 2 mm space for light body material.26 Studies by Idris and Hung were also in favor of the idea that dimensional accuracy was not affected by the impression technique. They claimed that impression materials were more effective than the techniques on the accuracy.12, 31

Conclusion

Impression technique is a critical variable in the accuracy of PVS impressions. Monophase materials act better in custom trays. They are prone to surface defects and voids. Dual-phase 2-step technique is proven to be highly accurate and is still the method of choice for most clinical conditions. Triple-phase 2-step techniques including “matrix impression system” are also claimed to be highly accurate. Among various methods of creating space for the wash material in 2-step technique, 1 or 2 mm space created by the use of temporary crowns or copings results in higher accuracy. Custom trays do not significantly increase the accuracy of impressions and rigid stock trays are suitable alternatives.

Conflict of Interest

None declared.

References

Journal Dental School; Vol 37, No.1, Winter 2019; 32-39

38
Review Article

Accuracy of Impression Techniques for Polyvinyl Siloxane Material

How to cite: